
pyahocorasick Documentation
Release 1.1.0

Wojciech Muła

Dec 11, 2018

Contents

1 Download and source code 3

2 Documentation 5

3 Quick start 7

4 Introduction 9

5 Some background about pyahocorasick internals 11

6 Other Aho-Corasick implementations for Python you can consider 13

7 API overview 15
7.1 Module constants . 15
7.2 Automaton class . 15
7.3 Automaton Trie methods . 16
7.4 Automaton Dictionary-like methods . 16
7.5 Aho-Corasick methods . 16
7.6 Automaton Attributes . 17
7.7 Other Automaton methods . 17

8 Examples 19
8.1 Example of the keys method behavior . 20

9 Build and install 21
9.1 Unicode and bytes . 21

10 Tests 23

11 Support 25

12 Contributing 27

13 Authors 29

14 License 31

15 API Reference 33

i

16 Indices and tables 35

ii

pyahocorasick Documentation, Release 1.1.0

pyahocorasick is a fast and memory efficient library for exact or approximate multi-pattern string search meaning
that you can find multiple key strings occurrences at once in some input text. The library provides an ahocorasick
Python module that you can use as a plain dict-like Trie or convert a Trie to an automaton for efficient Aho-Corasick
search.

It is implemented in C and tested on Python 2.7 and 3.4+. It works on Linux, Mac and Windows.

The license is BSD-3-clause. Some utilities, such as tests and the pure Python automaton are dedicated to the Public
Domain.

Contents 1

https://travis-ci.org/WojciechMula/pyahocorasick
https://ci.appveyor.com/project/WojciechMula/pyahocorasick

pyahocorasick Documentation, Release 1.1.0

2 Contents

CHAPTER 1

Download and source code

You can fetch pyahocorasick from:

• GitHub https://github.com/WojciechMula/pyahocorasick/

• Pypi https://pypi.python.org/pypi/pyahocorasick/

3

https://github.com/WojciechMula/pyahocorasick/
https://pypi.python.org/pypi/pyahocorasick/

pyahocorasick Documentation, Release 1.1.0

4 Chapter 1. Download and source code

CHAPTER 2

Documentation

The full documentation including the API reference is published on readthedocs.

5

http://pyahocorasick.readthedocs.io/

pyahocorasick Documentation, Release 1.1.0

6 Chapter 2. Documentation

CHAPTER 3

Quick start

This module is written in C. You need a C compiler installed to compile native CPython extensions. To install:

pip install pyahocorasick

Then create an Automaton:

>>> import ahocorasick
>>> A = ahocorasick.Automaton()

You can use the Automaton class as a trie. Add some string keys and their associated value to this trie. Here we
associate a tuple of (insertion index, original string) as a value to each key string we add to the trie:

>>> for idx, key in enumerate('he her hers she'.split()):
... A.add_word(key, (idx, key))

Then check if some string exists in the trie:

>>> 'he' in A
True
>>> 'HER' in A
False

And play with the get() dict-like method:

>>> A.get('he')
(0, 'he')
>>> A.get('she')
(3, 'she')
>>> A.get('cat', 'not exists')
'not exists'
>>> A.get('dog')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
KeyError

7

pyahocorasick Documentation, Release 1.1.0

Now convert the trie to an Aho-Corasick automaton to enable Aho-Corasick search:

>>> A.make_automaton()

Then search all occurrences of the keys (the needles) in an input string (our haystack).

Here we print the results and just check that they are correct. The Automaton.iter() method return the results as two-
tuples of the end index where a trie key was found in the input string and the associated value for this key. Here we
had stored as values a tuple with the original string and its trie insertion order:

>>> for end_index, (insert_order, original_value) in A.iter(haystack):
... start_index = end_index - len(original_value) + 1
... print((start_index, end_index, (insert_order, original_value)))
... assert haystack[start_index:start_index + len(original_value)] == original_
→˓value
...
(1, 2, (0, 'he'))
(1, 3, (1, 'her'))
(1, 4, (2, 'hers'))
(4, 6, (3, 'she'))
(5, 6, (0, 'he'))

You can also create an eventually large automaton ahead of time and pickle it to re-load later. Here we just pickle to a
string. You would typically pickle to a file instead:

>>> import cPickle
>>> pickled = cPickle.dumps(A)
>>> B = cPickle.loads(pickled)
>>> B.get('he')
(0, 'he')

See also:

• FAQ and Who is using pyahocorasick? https://github.com/WojciechMula/pyahocorasick/wiki/FAQ#
who-is-using-pyahocorasick

• API overview for more options and the API documentation.

• Examples for more examples.

• Build and install for more details on installation.

• Tests to run unit tests.

• Support for help and bugs.

• and Authors and License .

8 Chapter 3. Quick start

https://github.com/WojciechMula/pyahocorasick/wiki/FAQ#who-is-using-pyahocorasick
https://github.com/WojciechMula/pyahocorasick/wiki/FAQ#who-is-using-pyahocorasick

CHAPTER 4

Introduction

With an Aho-Corasick automaton you can efficiently search all occurrences of multiple strings (the needles) in an
input string (the haystack) making a single pass over the input string. With pyahocorasick you can eventually build
large automatons and pickle them to reuse them over and over as an indexed structure for fast multi pattern string
matching.

One of the advantages of an Aho-Corasick automaton is that the typical worst-case and best-case runtimes are about
the same and depends primarily on the size of the input string and secondarily on the number of matches returned.
While this may not be the fastest string search algorithm in all cases, it can search for multiple strings at once and its
runtime guarantees make it rather unique. Because pyahocorasick is based on a Trie, it stores redundant keys prefixes
only once using memory efficiently.

A drawback is that it needs to be constructed and “finalized” ahead of time before you can search strings. In several
applications where you search for several pre-defined “needles” in a variable “haystacks” this is actually an advantage.

Aho-Corasick automatons are commonly used for fast multi-pattern matching in intrusion detection systems (such
as snort), anti-viruses and many other applications that need fast matching against a pre-defined set of string keys.

Internally an Aho-Corasick automaton is typically based on a Trie with extra data for failure links and an implemen-
tation of the Aho-Corasick search procedure.

Behind the scenes the pyahocorasick Python library implements these two data structures: a Trie and an Aho-Corasick
string matching automaton. Both are exposed through the Automaton class.

In addition to Trie-like and Aho-Corasick methods and data structures, pyahocorasick also implements dict-like
methods: The pyahocorasick Automaton is a Trie a dict-like structure indexed by string keys each associated with a
value object. You can use this to retrieve an associated value in a time proportional to a string key length.

pyahocorasick is available in two flavors:

• a CPython C-based extension, compatible with Python 2 and 3.

• a simpler pure Python module, compatible with Python 2 and 3. This is only available in the source repository
(not on Pypi) under the py/ directory and has a slightly different API.

9

http://en.wikipedia.org/wiki/Aho-Corasick%20algorithm
http://en.wikipedia.org/wiki/trie

pyahocorasick Documentation, Release 1.1.0

10 Chapter 4. Introduction

CHAPTER 5

Some background about pyahocorasick internals

I wrote this article about different trie representations. These are experiments I made while creating this module.

11

http://0x80.pl/articles/trie-representation.html

pyahocorasick Documentation, Release 1.1.0

12 Chapter 5. Some background about pyahocorasick internals

CHAPTER 6

Other Aho-Corasick implementations for Python you can consider

While pyahocorasick tries to be the finest and fastest Aho Corasick library for Python you may consider these other
libraries:

• py_aho_corasick by Jan

• Written in pure Python.

• Poor performance.

• ahocorapy by abusix

• Written in pure Python.

• Better performance than py-aho-corasick.

• Using pypy, ahocorapy’s search performance is only slightly worse than pyahocorasick’s.

• Performs additional suffix shortcutting (more setup overhead, less search overhead for suffix lookups).

• Includes visualization tool for resulting automaton (using pygraphviz).

• MIT-licensed, 100% test coverage, tested on all major python versions (+ pypy)

• noaho by Jeff Donner

• Written in C. Does not return overlapping matches.

• Does not compile on Windows (July 2016).

• No support for the pickle protocol.

• acora by Stefan Behnel

• Written in Cython.

• Large automaton may take a long time to build (July 2016)

• No support for a dict-like protocol to associate a value to a string key.

• ahocorasick by Danny Yoo

• Written in C.

13

https://github.com/JanFan/py-aho-corasick
https://github.com/abusix/ahocorapy
https://github.com/JDonner/NoAho
https://github.com/scoder/acora
https://hkn.eecs.berkeley.edu/~dyoo/python/ahocorasick/

pyahocorasick Documentation, Release 1.1.0

• seems unmaintained (last update in 2005).

• GPL-licensed.

14 Chapter 6. Other Aho-Corasick implementations for Python you can consider

CHAPTER 7

API overview

This is a quick tour of the API for the C ahocorasick module. See the full API doc for more details. The pure Python
module has a slightly different interface.

The module ahocorasick contains a few constants and the main Automaton class.

7.1 Module constants

• ahocorasick.unicode — see Unicode and bytes

• ahocorasick.STORE_ANY, ahocorasick.STORE_INTS, ahocorasick.STORE_LENGTH — see
Automaton class

• ahocorasick.KEY_STRING ahocorasick.KEY_SEQUENCE — see Automaton class

• ahocorasick.EMPTY, ahocorasick.TRIE, ahocorasick.AHOCORASICK — see Automaton At-
tributes

• ahocorasick.MATCH_EXACT_LENGTH, ahocorasick.MATCH_AT_MOST_PREFIX,
ahocorasick.MATCH_AT_LEAST_PREFIX — see description of the keys method

7.2 Automaton class

Note: Automaton instances are pickle-able meaning that you can create ahead of time an eventually large automaton
then save it to disk and re-load it later to reuse it over and over as a persistent multi-string search index. Internally,
Automaton implements the __reduce__() magic method.

Automaton([value_type], [key_type])

Create a new empty Automaton optionally passing a value_type to indicate what is the type of asso-
ciated values (default to any Python object type). It can be one of ahocorasick.STORE_ANY,
ahocorasick.STORE_INTS or ahocorasick.STORE_LENGTH. In the last case the length of

15

https://docs.python.org/3/library/pickle.html

pyahocorasick Documentation, Release 1.1.0

the key will be stored in the automaton. The optional argument key_type can be ahocorasick.
KEY_STRING or ahocorasick.KEY_SEQUENCE. In the latter case keys will be tuples of integers.
The size of integer depends on the version and platform Python is running on, but for versions of Python
>= 3.3, it is guaranteed to be 32-bits.

7.3 Automaton Trie methods

The Automaton class has the following main trie-like methods:

add_word(key, [value]) => bool Add a key string to the dict-like trie and associate this key with a
value.

exists(key) => bool or key in ... Return True if the key is present in the trie.

match(key) => bool Return True if there is a prefix (or key) equal to key present in the trie.

7.4 Automaton Dictionary-like methods

A pyahocorasick Automaton trie behaves more or less like a Python dictionary and implements a subset of dict-like
methods. Some of them are:

get(key[, default]) Return the value associated with the key string. Similar to dict.get().

keys([prefix, [wildcard, [how]]]) => yield strings Return an iterator on keys.

values([prefix, [wildcard, [how]]]) => yield object Return an iterator on values associated
with each keys.

items([prefix, [wildcard, [how]]]) => yield tuple (string, object) Return an itera-
tor on tuples of (key, value).

7.4.1 Wildcard search

The methods keys, values and items can be called with an optional wildcard. A wildcard character is equivalent
to a question mark used in glob patterns (?) or a dot (.) in regular expressions. You can use any character you like as a
wildcard.

Note that it is not possible to escape a wildcard to match it exactly. You need instead to select another wildcard
character not present in the provided prefix. For example:

automaton.keys("hi?", "?") # would match "him", "his"
automaton.keys("XX?", "X") # would match "me?", "he?" or "it?"

7.5 Aho-Corasick methods

The Automaton class has the following main Aho-Corasick methods:

make_automaton() Finalize and create the Aho-Corasick automaton.

iter(string, [start, [end]]) Perform the Aho-Corasick search procedure using the provided input
string. Return an iterator of tuples (end_index, value) for keys found in string.

16 Chapter 7. API overview

pyahocorasick Documentation, Release 1.1.0

7.5.1 AutomatonSearchIter class

Instances of this class are returned by the iter method of an Automaton. This iterator can be manipulated through
its set() method.

set(string, [reset]) => None Set a new string to search eventually keeping the current Automaton state
to continue searching for the next chunk of a string.

For example:

>>> it = A.iter(b"")
>>> while True:
... buffer = receive(server_address, 4096)
... if not buffer:
... break
... it.set(buffer)
... for index, value in it:
... print(index, '=>', value)

When reset is True then processing is restarted. For example this code:

>>> for string in string_set:
... for index, value in A.iter(string)
... print(index, '=>', value)

does the same job as:

>>> it = A.iter(b"")
>>> for string in string_set:
... it.set(it, True)
... for index, value in it:
... print(index, '=>', value)

7.6 Automaton Attributes

The Automaton class has the following attributes:

kind [readonly] Return the state of the Automaton instance.

store [readonly] Return the type of values stored in the Automaton as specified at creation.

7.7 Other Automaton methods

The Automaton class has a few other interesting methods:

dump() => (list of nodes, list of edges, list of fail links) Return a three-tuple of
lists describing the Automaton as a graph of (nodes, edges, failure links). The source repository and source
package also contains the dump2dot.py script that converts dump() results to a graphviz dot format for
convenient visualization of the trie and Automaton data structure.

get_stats() => dict Return a dictionary containing Automaton statistics. Note that the real size occupied
by the data structure could be larger because of internal memory fragmentation that can occur in a memory
manager.

__sizeof__() => int Return the approximate size in bytes occupied by the Automaton instance. Also avail-
able by calling sys.getsizeof(automaton instance).

7.6. Automaton Attributes 17

http://graphviz.org
http://en.wikipedia.org/Memory%20fragmentation

pyahocorasick Documentation, Release 1.1.0

18 Chapter 7. API overview

CHAPTER 8

Examples

>>> import ahocorasick
>>> A = ahocorasick.Automaton()

>>> # add some key words to trie
>>> for index, word in enumerate('he her hers she'.split()):
... A.add_word(word, (index, word))

>>> # test that these key words exists in the trie all right
>>> 'he' in A
True
>>> 'HER' in A
False
>>> A.get('he')
(0, 'he')
>>> A.get('she')
(3, 'she')
>>> A.get('cat', '<not exists>')
'<not exists>'
>>> A.get('dog')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
KeyError

>>> # convert the trie in an Aho-Corasick automaton
>>> A.make_automaton()

>>> # then find all occurrences of the stored keys in a string
>>> for item in A.iter('_hershe_'):
... print(item)
...
(2, (0, 'he'))
(3, (1, 'her'))
(4, (2, 'hers'))
(6, (3, 'she'))

(continues on next page)

19

pyahocorasick Documentation, Release 1.1.0

(continued from previous page)

(6, (0, 'he'))

8.1 Example of the keys method behavior

>>> import ahocorasick
>>> A = ahocorasick.Automaton()

>>> # add some key words to trie
>>> for index, word in enumerate('cat catastropha rat rate bat'.split()):
... A.add_word(word, (index, word))

>>> # Search some prefix
>>> list(A.keys('cat'))
['cat', 'catastropha']

>>> # Search with a wildcard: here '?' is used as a wildcard. You can use any
→˓character you like.
>>> list(A.keys('?at', '?', ahocorasick.MATCH_EXACT_LENGTH))
['bat', 'cat', 'rat']

>>> list(A.keys('?at?', '?', ahocorasick.MATCH_AT_MOST_PREFIX))
['bat', 'cat', 'rat', 'rate']

>>> list(A.keys('?at?', '?', ahocorasick.MATCH_AT_LEAST_PREFIX))
['rate']

20 Chapter 8. Examples

CHAPTER 9

Build and install

To install for common operating systems, use pip. Pre-built wheels should be available on Pypi at some point in the
future:

pip install pyahocorasick

To build from sources you need to have a C compiler installed and configured which should be standard on Linux and
easy to get on MacOSX.

On Windows and Python 2.7 you need the Microsoft Visual C++ Compiler for Python 2.7 (aka. Visual Studio 2008).
There have been reports that pyahocorasick does not build yet with MinGW. It may build with cygwin but this has not
been tested. If you get this working with these platforms, please report in a ticket!

To build from sources, clone the git repository or download and extract the source archive.

Install pip (and its setuptools companion) and then run (in a virtualenv of course!):

pip install .

If compilation succeeds, the module is ready to use.

9.1 Unicode and bytes

The type of strings accepted and returned by Automaton methods are either unicode or bytes, depending on a
compile time settings (preprocessor definition of AHOCORASICK_UNICODE as set in setup.py).

The Automaton.unicode attributes can tell you how the library was built. On Python 3, unicode is the default.
On Python 2, bytes is the default and only value.

Warning: When the library is built with unicode support on Python 3, an Automaton will store 2 or 4 bytes per
letter, depending on your Python installation. When built for bytes, only one byte per letter is needed.

Unicode is NOT supported on Python 2 for now.

21

https://www.microsoft.com/en-us/download/details.aspx?id=44266

pyahocorasick Documentation, Release 1.1.0

22 Chapter 9. Build and install

CHAPTER 10

Tests

The source repository contains several tests. To run them use:

make test

23

pyahocorasick Documentation, Release 1.1.0

24 Chapter 10. Tests

CHAPTER 11

Support

Support is available through the GitHub issue tracker to report bugs or ask questions.

25

https://github.com/WojciechMula/pyahocorasick/issues

pyahocorasick Documentation, Release 1.1.0

26 Chapter 11. Support

CHAPTER 12

Contributing

You can submit contributions through GitHub pull requests.

27

https://github.com/WojciechMula/pyahocorasick/pull

pyahocorasick Documentation, Release 1.1.0

28 Chapter 12. Contributing

CHAPTER 13

Authors

The initial author and maintainer is Wojciech Muła. Philippe Ombredanne, the current co-owner, rewrote documenta-
tion, setup CI servers and did a whole lot of work to make this module better accesible to end users.

This library would not be possible without help of many people, who contributed in various ways. They created pull
requests, reported bugs as GitHub issues or via direct messages, proposed fixes, or spent their valuable time on testing.

Thank you.

29

https://github.com/pombredanne
https://github.com/WojciechMula/pyahocorasick/pull
https://github.com/WojciechMula/pyahocorasick/pull
https://github.com/WojciechMula/pyahocorasick/issues

pyahocorasick Documentation, Release 1.1.0

30 Chapter 13. Authors

CHAPTER 14

License

This library is licensed under very liberal BSD-3-Clause license. Some portions of the code are dedicated to the public
domain such as the pure Python automaton and test code.

Full text of license is available in LICENSE file.

Contents

• pyahocorasick

– Download and source code

– Documentation

– Quick start

– Introduction

– Some background about pyahocorasick internals

– Other Aho-Corasick implementations for Python you can consider

– API overview

* Module constants

* Automaton class

* Automaton Trie methods

* Automaton Dictionary-like methods

· Wildcard search

* Aho-Corasick methods

· AutomatonSearchIter class

* Automaton Attributes

31

http://spdx.org/licenses/BSD-3-Clause.html

pyahocorasick Documentation, Release 1.1.0

* Other Automaton methods

– Examples

* Example of the keys method behavior

– Build and install

* Unicode and bytes

– Tests

– Support

– Contributing

– Authors

– License

– API Reference

– Indices and tables

32 Chapter 14. License

CHAPTER 15

API Reference

33

pyahocorasick Documentation, Release 1.1.0

34 Chapter 15. API Reference

CHAPTER 16

Indices and tables

• genindex

• modindex

• search

35

	Download and source code
	Documentation
	Quick start
	Introduction
	Some background about pyahocorasick internals
	Other Aho-Corasick implementations for Python you can consider
	API overview
	Module constants
	Automaton class
	Automaton Trie methods
	Automaton Dictionary-like methods
	Aho-Corasick methods
	Automaton Attributes
	Other Automaton methods

	Examples
	Example of the keys method behavior

	Build and install
	Unicode and bytes

	Tests
	Support
	Contributing
	Authors
	License
	API Reference
	Indices and tables

